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Figure 1 Space-Based Laser Platform Concept 
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Figure 2 Directed Energy in Global and Tactical Defense Capability 
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Figure 3 LAS Threat Launch LaMudes 
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Figure 4 SBL Constellation Parameters 

its goal of defeating all missiles from all threats for 
at least 90% of war start times (constellation/target 
orientations). The Theater Defense threat scenar- 
ios are characterized by simultaneous launches of 
short range missiles. These cases posed the most 
serious challenge to the SBL's performance be- 
cause of the reduced average boost phase battle 
time available for each missile. To more thoroughly 
characterize the capabilities of the SBL constena- 
tion several launch windows were added to the 
threats. These windows, from 30 sec to 150 sec 
duration, is the time from launch of the first missile 
in the salvo to launch of the final missile inthe salvo. 
This situation may also be more realistic than the si- 
multaneous launch scenario because of the diffi- 
culty in coordinating a simultaneous salvo. As seen 
in Figure 7, the SBL performance against the TMD 

threat is outstanding. Assuming launch windows 
as low as 30 to 150 seconds allows the SBL to 
negate the entire TMD threat. 

A potential counter-measure to a missile de- 
fense system is to depress the apogee of the 
missiles below the edge of the sensible atmos- 
phere. The feasibilityof depressing the trajectories 
of the threat missiles was investigated by computer 
analysis. Eight missile types were evaluated in- 
cluding both theater missiles and strategic missiles. 
Figure 8 contains a summary of the range capabili- 
ties for these missiles. 

The nominal trajectory and performance for 
these missiles was provided with the threat docu- 
ment. The first step in the analysis was to deter- 
mine the aerodynamic drag coefficients by match- 
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Figure 11 Key SBL Programs 

tory, including balloons, RVs, and buses. The high 
quality focal plane sensor arrays, when used in 
conjunction with the large high quality beam ex- 
pander mirror, have the acuity required to distin- 
guish between objects of different shapes and 
sizes from thousands of kilometers away. This 
acuity is enhanced if the SBL illuminates the objects 
with its low power visible illumination laser. In the 
case of replica decoys, the SBL platform can irradi- 
ate all RV-like objects with its high energy beam 
and discriminate the real RVs from decoys by either 
observing its resulting velocity change or rise in 
temperature. 

SBL Technology is Mature 

The major building blocks for an SBL have all 
been demonstrated within the last 5 years. Each 
did so with space compatible designs and hard- 
ware that is traceable and scalable to operational 
requirements. These programs (Alpha, LAMP, 
LODE) are shown in Figure 11, along with the 
overall program flow. Generation of megawatt 
class beam power was repeatedly demonstrated 
by the Alpha chemical laser in 1990 and 1991. 
Demonstration of a 4 m primary mirror was accom- 
plished by the LAMP mirror program. LAMP met or 
exceeded all program requirements including 
wavefront quality. Overall beam sensing and 
control techniques were demonstrated on the 
LODE program in 1987, which addressed correcta- 

bility of wavefront error and jitter in the beam ex- 
pander and optical train. All three major experi- 
ments will be integrated in a high energy laser 
experiment called ALI (Alpha-LAMP Integration) in 
1995, which will demonstrate the integrated beam 
generation, control and expansion required for the 
operational SBL. 

Each of these areas appear in the baseline 
platform concept design, shown in Figure 12. This 
design is based on over a decade of research, 
development and testing of the key hardware sys- 
tems. Some of the important considerations forthe 
platform baseline were: 1) Use of high technical 
maturity, low risk components, 2) Fit within the 
envelope of existing or planned launch vehicles, 
and 3) Have on-orbit servicing and resupply capa- 
bility. The maturity of the key areas will now be 
explored in more detail. 

Laser Device: The baseline SBL laser device 
concept uses ALPHA- validated technology to 
produce HF fundamental laser radiation at around 
2.7 microns. This technology is the most advanced 
high power laser technology, with two high energy 
(megawatt-class) testbeds (i.e. the MIRACL laser 
at the White Sands Missile Range (WSMR) and the 
ALPHA laser at the TRW Capistrano Test Site 
(CTS)). Use of this advanced technology reduces 
the risk of a near-to-mid-term technology demon- 
stration. This type of laser was selected for devel- 
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type segmented primary mirror. LODE vaHdated 

beam w.th Holographic Optical Elements (HOEs) 
and an outgoing wavefront sensor. Using this 
mformat.cn to correct the beam pointing Z the 
beam wavefront errors through a hierarchical con 
trol system, the effort culminated in a successful 
hardware demonstration at Lockheed. DuSis 

derr»nstration,thesystemwassuccessfuHyaS 
calibrated, and tested over a broad range of ex- 
pected jrtterandwavefront disturbances. The LODE 
expenment provided a scalable basis for the ALI 
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sM using the LODE hierarchy controftechS 
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angle between the two orientation beacons. Once 
the mirror was in place an infrared beacon was 
d.rected to the satellite from AMOS and reteyed by 
the mirror on the RME satellite to a target board at 
K.he,.   The results of RME exceeded all project 
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Figure 16 Plume to Hardbody Handover Demostrated 

data to locate the hardbody position. It is being 
developed within the fire control technology base 
effort. Other TFEs have been conducted at the 
AMOS facility using the Digital Track which was 
also developed in the fine tracking technology base 
program. 

The current thrust of the field test programs is 
to demonstrate the ability to provide all the ATP 
functions from target acquisition through aimpoint 
selection and maintenance with realistic boost phase 
engagements. This will be accomplished with two 
high altitude balloon borne experiments: HABE 
and KESTRAL. The KESTRAL effort will provide 
critical phenomenology and diagnostic data for 
active and passive operational boosters. This will 
provide for validation or upgrades of current phe- 
nomenology and ATP design codes.   HABE will 

perform integrated ATP engagements of boosters, 
including acquisition, tracking, aimpoint selection, 
and stabilization of a simulated high energy laseron 
the booster aimpoint for scalable engagement 
scenarios, demonstrating performance in the sub 
microradian regime. HABE will incorporate many 
of the advanced technology components such as 
IPSRU and SSLRS as well as fire control algo- 
rithms such as Magic Arrow. The balloon programs 
will provide several flights per year starting in FY93 
to provide conclusive demonstrations of complete 
ATP capabilities required for space based DEW. 

Results from all the ATP activities noted above 
provide inputs to the ongoing Advanced DEW 
Acquisition, Pointing and Tracking (ADAPT) pro- 
gram.   ADAPT is developing full performance 

Typical ALPHA I Inner Cone Hex Plate Typical SBL Inner Cone Hex Plate 

Figure 17 SBL Etching Has Produced Hex Plates of Unequaled Quality 
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Figure 18 Uncooled Optic 
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Figure 22 Star LITE Conceptual Design 

lation which extends coverage to latitudes high 
enough to cover launches in the southern part of the 
former Soviet Union. Finally, a deployment of 
several more SBLs would give continuous world- 
wide coverage. Decision points occur at the begin- 
ning of each majorphase of the program. Once pro- 
duction is commenced, additional SBL platforms 
can be obtained for a relatively low cost, since the 
up-front non-recurring costs have already been 
paid. 

Conclusions 

Recently completed analyses show that a 
constellation of several SBL platforms employing 

near-term chemical laser technology provides ex- 
tremely effective, continuous world wide defense 
against limited strike ballistic missile threat scenar- 
ios. In addition, the SBL provides highly effective 
defense against threats stressing to other architec- 
tures such as low apogee threats and mid-course 
threats/counter- measures. The SBL's speed of 
light propagation to the target provides missile de- 
fense architectures with the capability of intercept- 
ing missiles while still in the boost phase, effectively 
countering these stressing threats. 

The required laserweapon platform brightness 
for an effective architecture is achievable within the 
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